

ROLE OF NLP IN ERA OF 4IR

Understanding Social Media Beyond Texts

Eftekhar Hossain Lecturer, CUET

Social Media Data

- \succ The number of users on social media is huge
- \succ One in-three people in the world use social media
- ➤ Important data source in both industry and academia

Social Media Implications

- \succ Diverse applications in
 - Sales, Marketing
 - Disaster management,
 - Crime surveillance and Event detection.

- ➤ A great number of users who update massive information every second
- ➤ Information is not only included in the short textual content
 - embedded in the images and videos

Objective

- ➤ Utilize Multimodal Data or Multiple modalities
 - Image
 - Text
 - Acoustic

- ➤ Epidemic of online <u>offensive</u> and <u>abusive</u> behaviour
- > <u>Mode</u> of communication transforming day by day
- ➤ Easier to deceive the <u>surveillance Engine</u>

➤ <u>Memes</u> can propagate information humorously or sarcastically

≻ Facebook Hateful Memes Challenge (2020)

Expectation:

Reality:

Combine them meaning become harmful

Collected from Facebook AI research

Change the images meaning become harmless

Collected from Facebook AI research

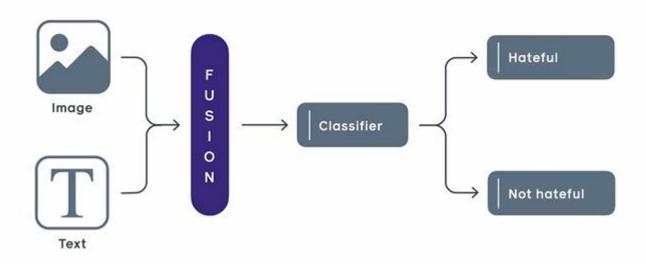
- Effective tool for detecting Harmful content
 When viewing a meme,
 - → we don't think about the words and photo independently of each other;
 - \rightarrow we understand the combined meaning together.

Challenging for Machines

- \rightarrow Can't just analyze the text and the image separately.
- → Must combine these different modalities and
- → Understand how the meaning changes when they are presented together.

Multimodal AI

Early fusion

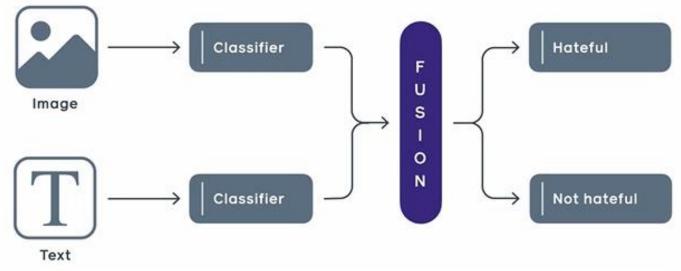


This approach enables the system to analyze the different modalities together

Collected from Facebook AI research

Multimodal AI

Late fusion



easier to build but less effective at understanding complex multimodal content

Identification of Multilingual Offense and Troll from Social Media Memes using Weighted Ensemble of Multimodal Features (Hossain et. al, 2022) [Journal Paper]

Authors: Eftekhar Hossain, Omar Sharif, Mohammed Moshiul Hoque, M. Ali Akber Dewan, Nazmul Siddique, Md. Azad Hossain

Multimodal AI (Paper-1)

Identification of Multilingual Offense and Troll from Social Media Memes using Weighted Ensemble of Multimodal Features [Journal Paper]

(a) Offensive

(b) Troll

(c) Troll

Drawbacks of Previous Works

- → Past studies considered only a single modality (image or text)
- \rightarrow Not explored the joint modelling of multimodal features
- → As well as their counteractive unimodal features (i.e., image, text) to classify undesired memes
- \rightarrow No <u>unified architecture</u> for multilingual memes

→ How to develop a framework leveraging features from <u>visual</u> and textual modality to identify <u>offense and troll</u> from memes ?

Contributions

- → Propose a model that exploits visual, textual and multimodal features of the <u>multilingual</u> memes.
- → Investigate the multimodal <u>decision fusion</u>, and <u>feature fusion</u> approaches
- → Employed an <u>ensemble technique</u> that automatically assigns appropriate weight to the participating modules

Description of the Task

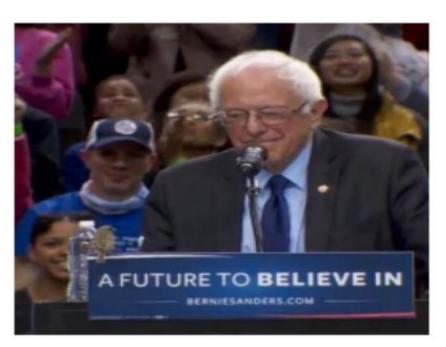
- → Develop a framework (F) to identify offense and troll from memes
- → F analyzes a set of memes and $M = m_1, m_2, \dots, m_n$ categorize them as offense/troll (c = 1) or not (c = 0)
- → Each meme consists of visual (v) and textual (t) information and the F utilize these information

D1: MultiOFF (offense: 303, not-offense: 440)

D2: TamilMemes (Troll: 1677, Not-troll: 1290)

Offense: Demean social identity, harass targeted individuals, community or a minority group

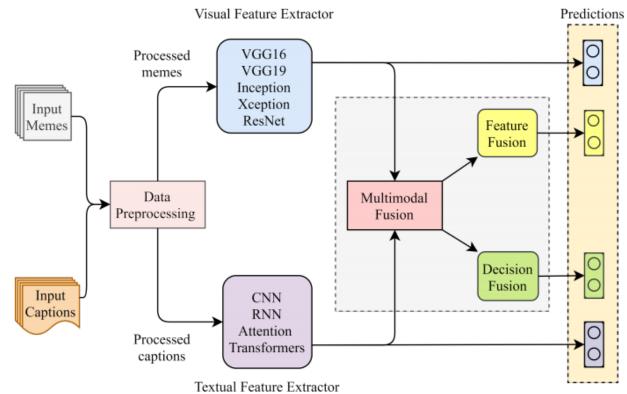
Troll : Provoke, abuse or insult individuals, group, or a race



Offensive

Not-offensive

Methodology



Abstract view of the multimodal offense and troll detection system

Methodology

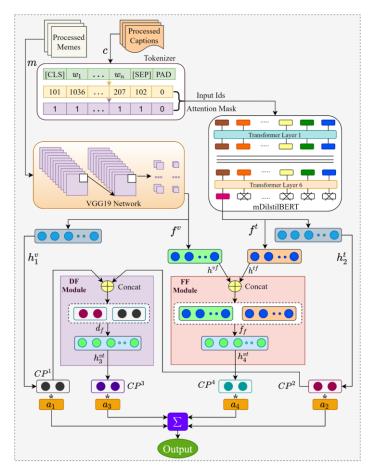
Algorithm 1: Process of selecting best 3 visual and textual models

- 1 Input: Weighted f₁-scores
- 2 Output: Best visual and textual models
- 3 $V_f \leftarrow [vf_1, vf_2, ..., vf_N]$ (Weighted f_1 scores of visual models); 4 $T_f \leftarrow [tf_1, tf_2, ..., tf_M]$ (Weighted f_1 scores of textual models); 5 $V_m \leftarrow [];$ 6 $T_m \leftarrow [];$ 7 sort($V_f, V_f + N$);
- 8 sort($T_f, T_f + M$);
- 9 //choosing best 3 visual and textual models
- 10 **for** $i\epsilon(1,3)$ **do**
- 11 $V_m.append(V_f[i]);$
- 12 $T_m.append(T_f[i]);$
- 13 i = i + 1;

14 end

- \succ VGG16, VGG19, and ResNet50 are the best visual models
- m-BERT, m-DistilBERT, and XLM-R are the best textual models.
- ➤ <u>Multimodal Models</u>
 - we obtain a total of ((3x3)x 2) = 18 multimodal models where each fusion approach (i.e., decision, feature) contributed <u>9 different models</u>.

Proposed Ensemble Technique



This approach exploits the strength of multiple models and tries to increase the overall system predictive accuracy

Algorithm 2: Process of the proposed weighted ensemble technique	
1 Input: Class probabilities and Accuracy	
2 Output: Predictions of the W-ensemble	
$s cp \leftarrow [] (class probabilities);$	
4 $a \leftarrow [] (accuracy);$	
5 sum = [] (weighted sum);	
6 for $i\epsilon(1,m)$ do	
7 for $j\epsilon(1,l)$ do	
8 9 $sum[i] = sum[i] + (cp_i^j[] * a_j);$ j = j + 1;	
9 $j = j + 1;$	
10 end	
11 $i = i + 1;$	
12 end	
13 n_sum = 0;	
14 for $j\epsilon(1,l)$ do	
$n_sum = n_sum + a_j;$	
16 $j = j + 1;$	
17 end	
18 $P = (sum/n_sum) //normalized probabilities;$	
19 $E_p = \arg \max(P) // \text{ set of predictions;}$	
	_

Experiments and Results

Approach	Models		Datas	et-1 (D1)	Dataset-2 (D2)				
		Α	Р	R	f ₁ -score	Α	Р	R	f ₁ -score	
	VGG16	0.577	0.581	0.577	0.579	0.596	0.572	0.596	0.502	
	VGG19	0.610	0.621	0.610	0.614	0.575	0.536	0.575	0.516	
Visual	ResNet50	0.624	0.607	0.624	0.606	0.592	0.560	0.592	0.503	
	InceptionV3	0.604	0.562	0.604	0.532	0.509	0.456	0.509	0.464	
	Xception	0.503	0.493	0.503	0.497	0.572	0.506	0.572	0.478	
	CNN	0.510	0.502	0.510	0.506	0.559	0.523	0.559	0.518	
Textual	BiLSTM	0.530	0.487	0.530	0.496	0.595	0.568	0.595	0.530	
Textual	BiLSTM + CNN	0.590	0.556	0.590	0.550	0.595	0.569	0.595	0.536	
	BiLSTM + Attention	0.597	0.568	0.597	0.564	0.548	0.509	0.548	0.507	
	m-BERT	0.638	0.625	0.638	0.626	0.608	0.591	0.608	0.561	
	m-DistilBERT	0.671	0.662	0.671	0.654	0.601	0.583	0.601	0.573	
	XLM-R	0.591	0.573	0.591	0.576	0.601	0.578	0.601	0.556	

 Table 1:
 Performance comparison of visual and textual models on test set

Experiments and Results

Approach	Mod	els		Datas	et-1 (D1))		Datas	et-2 (D2))
			Α	Р	R	f ₁ -score	Α	Р	R	f ₁ -score
	m-BERT +	VGG16	0.483	0.488	0.483	0.485	0.583	0.539	0.583	0.499
		VGG19	0.544	0.541	0.544	0.542	0.589	0.555	0.589	0.513
		ResNet50	0.577	0.558	0.577	0.562	0.513	0.532	0.513	0.517
D · · · D ·		VGG16	0.537	0.523	0.537	0.528	0.601	0.579	0.601	0.547
Decision Fusion	m-DBERT +	VGG19	0.591	0.628	0.591	0.595	0.582	0.583	0.582	0.583
		ResNet50	0.570	0.576	0.570	0.573	0.574	0.556	0.574	0.556
	XLM-R +	VGG16	0.497	0.523	0.497	0.503	0.592	0.579	0.592	0.579
		VGG19	0.497	0.528	0.497	0.502	0.567	0.559	0.567	0.567
		ResNet50	0.604	0.563	0.604	0.532	0.574	0.551	0.574	0.548
		VGG16	0.584	0.564	0.584	0.567	0.580	0.556	0.580	0.549
	m-BERT +	VGG19	0.577	0.547	0.577	0.549	0.604	0.588	0.604	0.529
		ResNet50	0.584	0.567	0.584	0.570	0.568	0.511	0.568	0.489
		VGG16	0.604	0.592	0.604	0.595	0.589	0.563	0.589	0.546
Feature Fusion	m-DBERT +	VGG19	0.685	0.681	0.685	0.660	0.591	0.568	0.591	0.557
		ResNet50	0.611	0.598	0.611	0.600	0.597	0.571	0.597	0.528
		VGG16	0.570	0.582	0.570	0.574	0.586	0.539	0.586	0.487
	XLM-R +	VGG19	0.530	0.524	0.527	0.502	0.568	0.518	0.568	0.499
		ResNet50	0.577	0.589	0.577	0.581	0.608	0.618	0.609	0.508

 Table 2:
 Performance comparison of multimodal models on test set

Experiments and Results

Approach	Models	Dataset-1 (D1)			Dataset-2 (D2)				
		Α	Р	R	f ₁ -score	A	Р	R	f ₁ -score
	V + T	0.617	0.609	0.617	0.612	0.588	0.555	0.588	0.522
	V + DF	0.597	0.614	0.597	0.602	0.574	0.535	0.574	0.516
	V + FF	0.638	0.625	0.638	0.626	0.586	0.548	0.586	0.509
	T + DF	0.678	0.669	0.678	0.663	0.594	0.574	0.594	0.566
Average Encomble	T + FF	0.678	0.678	0.678	0.644	0.603	0.584	0.603	0.571
Average Ensemble	DF + FF	0.678	0.673	0.678	0.651	0.594	0.573	0.594	0.563
	V + T + DF	0.570	0.565	0.570	0.567	0.585	0.556	0.585	0.540
	V + T + FF	0.678	0.669	0.678	0.665	0.592	0.566	0.592	0.546
	V + DF + FF	0.604	0.592	0.604	0.594	0.588	0.557	0.588	0.532
	T + DF + FF	0.655	0.656	0.655	0.654	0.601	0.583	0.601	0.573
	V + T + DF + FF	0.671	0.662	0.671	0.659	0.592	0.567	0.592	0.548
	V + T	0.637	0.624	0.637	0.6232	0.583	0.551	0.583	0.5314
	V + DF	0.597	0.614	0.597	0.6019	0.574	0.535	0.574	0.5164
	V + FF	0.644	0.630	0.644	0.6133	0.593	0.564	0.592	0.5292
	T + DF	0.677	0.669	0.677	0.6627	0.594	0.573	0.593	0.5658
Weighted Encomble	T + FF	0.678	0.678	0.677	0.6444	0.597	0.576	0.596	0.5632
Weighted Ensemble	DF + FF	0.671	0.663	0.671	0.6458	0.594	0.572	0.594	0.5625
	V + T + DF	0.597	0.590	0.597	0.5927	0.587	0.561	0.588	0.5457
	V + T + FF	0.677	0.669	0.677	0.6650	0.592	0.566	0.592	0.5460
	V + DF + FF	0.617	0.602	0.617	0.6041	0.592	0.565	0.592	0.5415
	T + DF + FF	0.685	0.686	0.685	0.6536	0.601	0.583	0.575	0.5734
	V + T + DF + FF	0.677	0.669	0.684	0.6673	0.583	0.587	0.585	0.5859

Table 3:	Performance comparis	son of Ensemble	techniques on test set
	1		1

Error Analysis

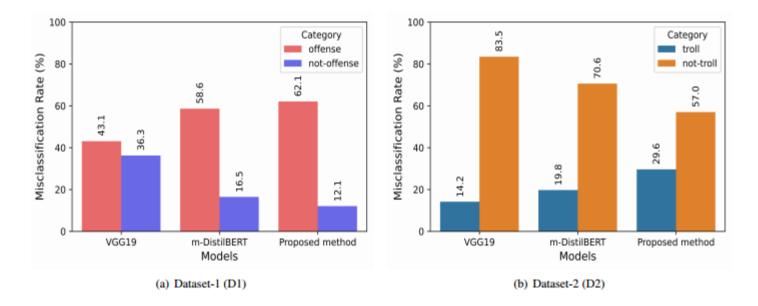


Fig 1. Proportion of misclassification among the classes of dataset-1 (D1) and dataset-2 (D2)

Error Analysis

Fig 2. Few correctly and misclassified examples predicted by the proposed and other approaches on the dataset-1

Fig 3. Few correctly and misclassified examples predicted by the proposed and other approaches on the dataset-2

model's performance becomes biased towards a particular class (i.e., not-offense/not-troll) for both datasets

The possible reason of this

- → extensive appearance of some strong words such as "Trump", "Hilary", "Bernie", "Communist", "Amala", "Sayessha", "boys", "girls", and "Anna"
- → some <u>world-famous person faces</u> frequently appeared in the memes of both classes

Comparison

Techniques	Datasets	WF (%)
Suryawanshi et al. [13]	MultiOFF	54
Mishra et al. [103]	TamilMemes	30
Huang et al. [104]	TamilMemes	40
Hegde et al. [74]	TamilMemes	47
Manoj et al. [45]	TamilMemes	48
Que et al. [105]	TamilMemes	49
Bharathi et al. [106]	TamilMemes	50
Zichao et al. [73]	TamilMemes	55
Suryawanshi et al. [14]	TamilMemes	57
Proposed (weighted encemble)	MultiOFF	66.73
Proposed (weighted ensemble)	TamilMemes	58.59

 Table 4:
 Comparative analysis of the proposed method with the existing state-of-the-art techniques

Conclusion

- → Proposed technique outdoes the unimodal (i.e., image, text), multimodal, and average ensemble models with weighted f1-score of <u>66.73% (MultiOFF)</u> and <u>58.59% (TamilMemes)</u>.
- → Proposed technique outcomes are approximately <u>13% (in 'MultiOFF')</u> and <u>1.69% (in 'TamilMemes')</u> ahead compared to the current state of the art systems.
- → Thus, results ensured the effectiveness of the proposed technique in detecting offensive and troll memes based on multimodal information.

MemoSen: A Multimodal Dataset for Sentiment Analysis of Memes [Language Resource and Evaluation Conference(LREC), 2022]

Authors: Eftekhar Hossain, Omar Sharif, Mohammed Moshiul Hoque

Sentiment analysis of memes has become a crucial research issue in low resource languages like Bengali.

Necessity

To mitigate the spread of negativity and understand the public expression towards an event or topic.

Scarcity of benchmark corpora in Bengali

Challenging for the machines and humans for several reasons

- Memes are context dependent
- Visual and textual information are often disparate
- Embedded text is too short

Extracting the code-mixed and code switched text from the memes

When You Realise Pohela Boishakh Is Near

Contribution

 ✓ Created the *MemoSen*, a multimodal sentiment analysis dataset for Bengali
 ✓ Annotated with Positive, Negative, Neutral labels.

Performed extensive experiments with state-of the-art visual and textual and multimodal models.

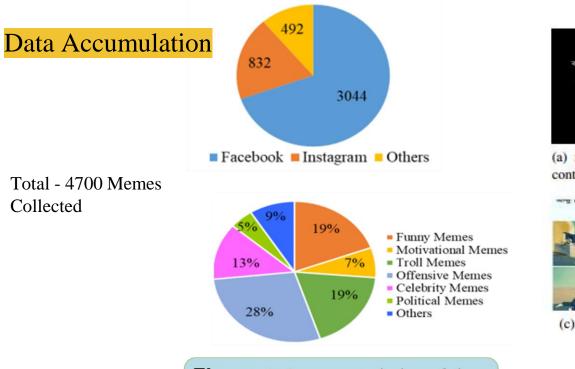
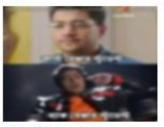


Figure 1. Source statistics of the MemoSen dataset

(a) memes without visual content

(b) memes without textual content

(c) memes with cartoons



(d) Non readable memes

Removed 332 Memes based on the above criteria

Data Annotation

Positive, Negative, Neutral

Positive \rightarrow expresses affection, support, gratitude, accolade, and motivation

Negative \rightarrow intends to denigrate, insult, disregard an entity based on its social, personal and organizational status

Neutral \rightarrow intention of the memes can not infer as positive or negative

Process of Annotation

 MemoSen consists of 4368 memes.
 Considered memes with captions in Bengali, Bengali and English (code-mixed) or in Banglish (code-switched) manner.

✓ Captions are manually extracted.

A mean kappa score of 0.674 is obtained between the three annotators

Algorithm 1: Sentiment label assigning process

- 1 Input: Set of memes with associated captions
- 2 Output: Dataset with sentiment annotation
- 3 $M \leftarrow \{m_1, m_2, ..., m_n\}$ (set of collected memes);
- 4 $MemoSen \leftarrow []$ (Multimodal sentiment dataset);
- 5 $SL \leftarrow []$ (final sentiment labels of the memes);
- 6 $L[n][2] \leftarrow \{x_1, x_2, .., x_m\}$ (initial labels);

```
7 for m_i \in M do
      y_1 = L[i][1] (first annotator label);
      y_2 = L[i][2] (second annotator label);
9
      if (y_1 == y_2) then
10
          MemoSen.append(m_i);
11
          SL.append(y_1);
12
      else
13
          1. expert resolve the issue;
14
          decide final label and add it to
15
            'MemoSen'
      end
16
      i = i + 1;
17
18 end
```


যখন মায়ের সাথে ঝগড়া হওয়ার পর মা খেতে ডাকে

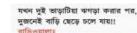
(a) meme shows affection

পার্থক্য জানুন

NO. 1 BATSMAN IN ODIS

(b) meme shows accolade

(f) shows obscene content



(g) memes with inherent sentiment

ble

Chele-na

Selena

Guerners

(d) insult a person

(e) denigrate a group of celebrities

	Class	Train	Test	Valid	Total
Dataset Distribution and	Positive	950	285	114	1349
Analysis	Negative	2001	524	203	2728
ranary 515	Neutral	195	64	32	291

Table 1: Number of samples in train, test and validation set for each class

	Positive	Negative	Neutral
Positive	-	0.355	0.213
Negative	-	-	0.228

Table 2: Jaccard similarity of 400 most frequent words between each pair of classes

Methodology

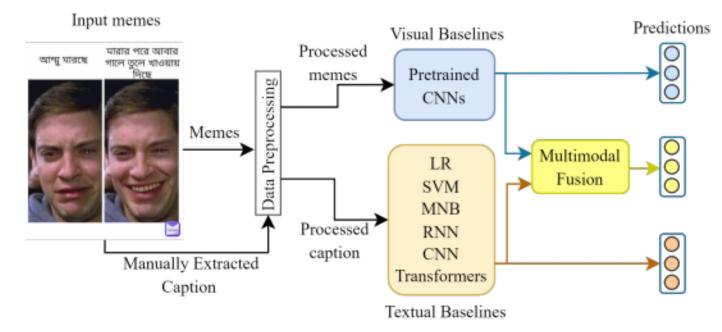


Fig 1. Abstract view of the Bengali meme sentiment classification system

Experiments and Results

Approach	Models	P	R	WF
	Xception	0.587	0.615	0.579
	VGG19	0.588	0.543	0.563
Visual	VGG16	0.582	0.571	0.559
	ResNet50	0.602	0.628	0.600
	DenseNet	0.585	0.609	0.594
	LR	0.617	0.663	0.608
	MNB	0.643	0.663	0.628
	SVM	0.670	0.653	0.608
	BiLSTM (B)	0.587	0.604	0.594
Textual	CNN (C)	0.605	0.600	0.594
	B+C	0.606	0.554	0.576
	MurIL	0.624	0.640	0.631
	Bangla-BERT	0.622	0.605	0.605
	XLM-R	0.360	0.600	0.450

Table 3:Performance comparison of visualand textual models on the test set.

		Models	Р	R	WF
		BiLSTM	0.625	0.633	0.626
		CNN	0.575	0.591	0.582
FF	R+	BiLSTM+CNN	0.615	0.578	0.592
		MurIL	0.525	0.392	0.419
		Bangla-BERT	0.510	0.557	0.508
		BiLSTM	0.644	0.631	0.635
		CNN	0.663	0.628	0.643
DF	R+	BiLSTM+CNN	0.566	0.592	0.575
		MurIL	0.552	0.554	0.543
		Bangla-BERT	0.504	0.394	0.329

-

Table 4:Performance comparison of multimodalmodels on test set. Here, (+) sign denoted theaggregation of visual and textual models

ভিডিও কলের সময় যখন বন্ধু ক্রিনশট উঠায়।

(a) Visual Model: Negative (X) Textual Model: Neutral (X) Multimodal Model: Positive (1)

চাবে থাবি

(b) Visual Model: Neutral (X) Textual Model: Positive (X) Multimodal Model: Negative (1)

যখন একসাথে দুই

ডেট থাকে

(c) Visual Model: Negative (X) Textual Model: Negative (X) Multimodal Model: Positive (X)

Fig 2. Example memes where aggregation of the visual and textual modalities yield better predictions

Error Analysis

Model's performance is more biased towards negative class Imbalanced dataset

Observations

- ◆ large number of words are overlapped between the classes
- the code-mixed and code-switched words
- the consistent visual features (i.e., familiar person faces) across the memes of the different classes

Conclusion

- → We introduced MemoSen, a multimodal benchmark dataset.
- → The evaluation exhibits that the integration of multimodal information significantly improves (about 1.2%) the meme sentiment classification

A Deep Attentive Multimodal Learning Approach for Disaster Identification from Social Media Posts [IEEE Access Journal, 2022]

Authors: Eftekhar Hossain, Mohammed Moshiul Hoque, Enamul Hoque, Md Saiful Islam

Multimodal AI (Paper-3)

#terriblefire #plascobuilding #nostalgia #tragedy #buildingcollapse

Drawbacks of Previous Works

- → While many studies have shown the effectiveness of combining text and image contents for disaster identification
- → Most previous work focused on analyzing only the textual modality and/or applied traditional RNN or CNN which might lead to performance degradation in case of long input sequences.

→ Develop an effective computational model for identifying disaster-related information by synergistically integrating features from visual and textual modalities.

Contribution

- → Propose a multimodal architecture that utilizes ResNet50 and BiLSTM recurrent neural network with attention mechanism to classify the damage-related posts
- → compare the performance of the proposed model with a set of existing unimodal (i.e., image, text) and multimodal techniques.
- \rightarrow Empirically evaluate the proposed model on a benchmark dataset and
- → demonstrated how <u>introducing attention</u> could enhance the system performance through an intrinsic evaluation.

Contribution

- → Propose a multimodal architecture that utilizes <u>ResNet50 and BiLSTM</u> recurrent neural network with attention mechanism to classify the damage-related posts
- → compare the performance of the proposed model with a set of existing unimodal (i.e., image, text) and multimodal techniques.
- → Empirically evaluate the proposed model on a benchmark dataset and demonstrated how <u>introducing attention</u> could enhance the system performance through an <u>intrinsic evaluation</u>.

Problem Formulation and Dataset

- → Automatically classify disaster types such as floods, fires, earthquake etc. from social media posts
- → Disaster Types:
 - Damage to infrastructure (DI)
 - Damage to nature (DN)
 - ◆ Fires (F)
 - ◆ Floods (Fl)
 - ◆ Human damage (HD)

Methodology

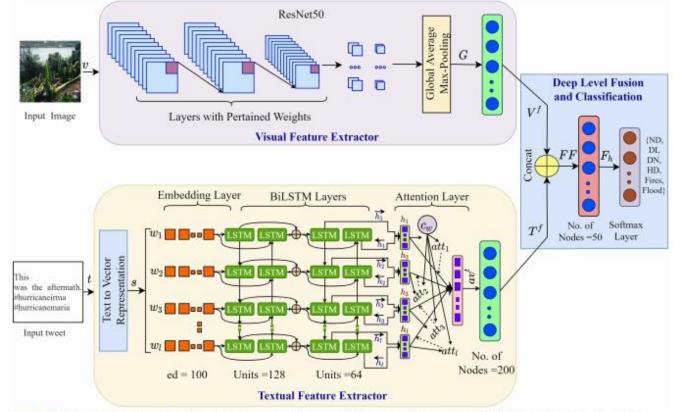


FIGURE 2. Our proposed multimodal architecture for disaster identification: the upper block represents the visual feature extractor module and the bottom block is the textual feature extractor module. Here, v and t indicates the preprocessed image and text respectively. The features extracted from the two modules are passed through the deep level fusion and classification layer to classify the sample.

Results

Approach	Models	P(%)	R (%)	WF(%)
	VGG19 [49]	81.06	81.51	81.21
Visual	Inception [50]	77.41	77.91	77.38
	ResNet50 [40]	81.88	81.51	81.63
	BiLSTM	85.92	85.45	85.57
Textual	CNNText	84.97	84.25	84.45
Textual	BiLSTM+CNNText	85.54	84.42	84.70
	BiLSTM+Attention	89.14	88.87	88.75
	VGG19+BiLSTM	81.98	76.20	78.14
	VGG19+CNNText	74.39	73.46	72.57
	VGG19+BiLSTM+CNNText	78.24	77.74	77.67
	VGG19+BiLSTM+Attention	89.54	89.38	89.19
	Inception+BiLSTM	82.21	74.48	77.01
Multimodal	Inception+CNNText	79.66	79.10	78.28
	Inception+BiLSTM+CNNText	77.29	78.08	77.38
	Inception+BiLSTM+Attention	81.18	80.82	80.48
	ResNet50+BiLSTM	84.22	81.34	81.90
	ResNet50+CNNText	77.68	78.42	77.45
	ResNet50+BiLSTM+CNNText	80.30	79.62	79.84
	ResNet50+BiLSTM+Attention (Proposed Method)	93.35	93.15	93.21

 Table 1:
 Performance comparison of different unimodal and multimodal models on the test set

Error Analysis

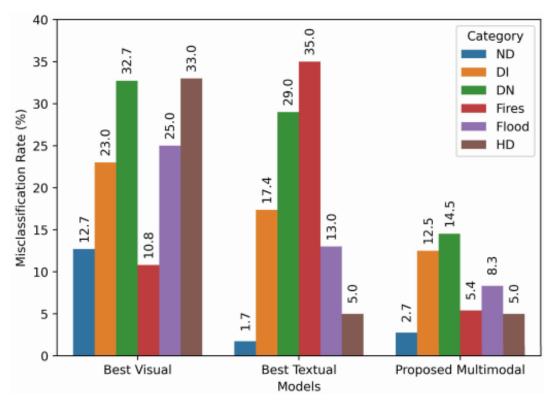


Fig 3: Error rate analysis of the individual classes with different approaches.

Error Analysis

Sample	Image	Tweet	Actual label	Predicted label
(1)		MooseMonday with my favorites! A couple #bullmoose from the weekend! #moose #wildlife #wildlifephotography #mammal #wilderness #wildernessculture	ND	Visual Modality: DN (X) Visual Modality: DN (X) Proposed Multimodal: ND(√)
(2)		#sandy #youwhore massive #treebranch fell and took out two 8 foot sections of the fence in the pic.#fallentree #30ftdrop #sandydamage	DI	Visual Modality: DN (X) Textual Modality: DN (X) Proposed Multimodal: Dl(√)
(3)		Please curtail this hazardous 20+ year practice.#csi #uci #bordertown #newportbeach #mudslide #caution #landslide #smashingpumkins	DN	Visual Modality: DI(X) Textual Modality: DI(X) Proposed Multimodal: DN(√)

Table 2: Example image and tweet text pairs where model aggregation of the inputmodalities produce better results

Intrinsic Performance Analysis

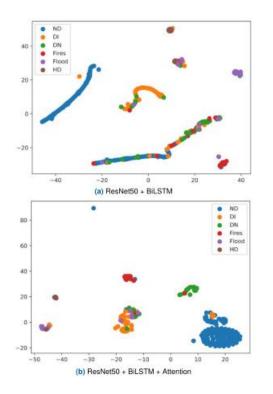


Fig 4. Scatter plots of test input features extracted by the multimodal models (a) without attention layer and (b) with attention layer

Comparison

Method	Modality	WF(%)
Mouzannar et al. [7]	Image+Text	92.14
Ferda et. al [8]	Image+Text	75.11
Kumar et. al [11]	Image+Text	77.84
Nguyen et al [29]	Image-only	75.17
Caragea et al. [21]	Text-only	75.23
Aipe et. al. [22]	Text-only	76.76
Yu et. al. [23]	Text-only	78.47
Xiao et. al [18]	Text-only	86.05
Proposed	Image+Text	93.21

Table 3. Results of comparison concerning WF-score

Conclusion

- → presented a <u>multimodal approach</u> that can effectively learn from the image and text data.
- → Proposed model outperforms the baseline unimodal and multimodal models by acquiring the highest weighted F1-score of 93.21%.
- → Comparative analysis illustrated that the proposed method outcome is approximately <u>1% and 7%</u> ahead of the existing start-of-the-art models.

Future Directions

- → Multimodal Hate Speech Detection
- \rightarrow Multimodal Emotion Recognition
- → Multimodal Event Detection
- \rightarrow Multimodal Humor or Sarcasm Detection

ThankYou

